2025/10 74

mAP(mean Average Precision)

mAP(mean Average Precision)는 객체 탐지(Object Detection) 모델의 성능을 평가하는 가장 표준적이고 중요한 지표입니다. 간단히 말해, 모델이 이미지 내의 여러 객체들을 '얼마나 정확하게(Precision)' 그리고 '얼마나 빠짐없이(Recall)' 찾아내는지를 하나의 숫자로 요약한 값입니다. mAP를 이해하기 위해서는 네 가지 구성 요소(IoU, Precision/Recall, AP, mAP)를 순서대로 이해해야 합니다.1. IoU (Intersection over Union) 가장 기본이 되는 개념입니다. 모델이 예측한 박스(Predicted Box)가 실제 정답 박스(Ground Truth Box)와 얼마나 겹치는지를 측정합니다.계산식: 두 박스의 교집합 영역을 합집..

혼동 행렬과 성능 평가 지표

혼동 행렬(Confusion Matrix)진단 장비의 성능을 파악하기 위하여 질병의 유무를 알고 있는 사람들을 대상으로 진단을 수행하고 아래와 같이 혼동 행렬을 작성합니다.A: 진양성(True Positive) 수B: 위양성(False Positive, 1종 오류) 수C: 위음성(False Negative, 2종 오류) 수D: 진음성(True Negative) 수용어의 의미'혼동 행렬'이라는 용어는 그 기능에서 직접 유래했습니다. 이 행렬은 분류 모델이 각 클래스(범주)를 얼마나 '혼동(confuse)'하는지를 한눈에 보여주기 때문입니다.즉, 모델의 예측이 얼마나 헷갈렸는지를 시각적으로 표현한 표입니다.'혼동'의 주체: 모델 (또는 분류기) '혼동'의 내용: 하나의 클래스(실제 값)를 다른 클래스(예측 ..

공격 유형 비교: 모델 역공격, 멤버십 추론 공격, 모델 탈취/추출 공격

모델 역공격과 멤버십 추론은 모델의 '학습 데이터'를 표적으로 삼아 프라이버시를 침해하는 반면, 모델 탈취는 '모델 자체'를 표적으로 삼아 지적 재산을 훔치는 공격입니다. 다음은 세 가지 공격 유형에 대한 비교 설명입니다.공격 유형별 비교 요약공격 유형모델 역공격 (Model Inversion)멤버십 추론 공격 (Membership Inference)모델 탈취/추출 (Model Stealing/Extraction)주요 목표학습 데이터의 특징 또는 원본 복원특정 데이터가 학습에 사용되었는지 확인원본 모델과 동일한 성능의 모델 복제공격 대상모델의 출력값, 신뢰도 점수모델의 신뢰도 점수 차이모델 API의 입력/출력 (질의-응답)핵심 침해데이터 프라이버시데이터 프라이버시지적 재산(IP)1. 모델 역공격 (Mod..

보안 위협: 멤버십 추론 공격(Membership Inference Attack)

인공지능 모델의 보안 위협 중 하나인 멤버십 추론 공격에 대해 소개하고, 실제 적용 사례를 제시합니다.멤버십 추론 공격 소개멤버십 추론 공격은 특정 데이터가 AI 모델의 학습 데이터 세트에 포함되었는지 여부를 알아내려는 프라이버시 공격입니다.1. 공격의 목표와 원리목표: 공격자는 자신이 가진 특정 데이터(예: A라는 사람의 의료 기록, B의 사진)가 이 모델을 학습시키는 데 사용되었는지 '예' 또는 '아니오'로 판별하는 것을 목표로 합니다.핵심 원리: AI 모델, 특히 딥러닝 모델은 학습 데이터에 과적합(overfitting)되는 경향이 있습니다. 즉, 모델은 자신이 학습한 '본 적 있는' 데이터와 '처음 보는' 데이터에 대해 미묘하게 다르게 반응합니다. 학습 데이터(멤버): 모델이 이미 학습한 데이터가..

보안 위협: 모델 탈취/추출 공격(Model Stealing/Extraction Attack)

인공지능(AI) 모델, 특히 딥러닝 모델의 구조(architecture)와 파라미터(parameter, 가중치)는 모델의 핵심 지적 재산(IP)이자 성능을 좌우하는 전부입니다. 이러한 정보가 유출되는 것은 기업이나 연구 기관에 막대한 금전적, 전략적 손실을 초래할 수 있는 심각한 보안 위협입니다. 이러한 위협은 크게 '모델 탈취(Model Stealing)' 또는 '모델 추출(Model Extraction)' 공격의 범주에 속합니다.1. 모델 구조 누출모델 구조 누출은 AI 모델의 '청사진'을 훔치는 행위입니다. 이는 모델이 몇 개의 레이어로 구성되어 있는지, 각 레이어는 어떤 종류(e.g., Convolutional, Recurrent, Transformer)인지, 어떻게 연결되어 있는지 등의 하이퍼파..

보안 위협: 모델 역공격(Model Inversion Attack)

인공지능(AI) 모델의 보안 위협 중 하나인 모델 역공격(Model Inversion Attack)에 대해 소개하고 주요 사례를 설명합니다.모델 역공격 (Model Inversion Attack) 이란? 모델 역공격은 이미 학습이 완료된 AI 모델을 이용하여, 모델이 학습했던 원본 학습 데이터(training data)의 일부 또는 전체를 복원하려는 사이버 공격입니다. 일반적으로 AI 모델은 학습 데이터를 통해 특정 패턴을 학습하며, 이 과정에서 데이터의 민감한 정보가 모델 내부에 '기억'될 수 있습니다. 공격자는 이 점을 악용하여, 모델의 출력값(예: 예측 결과, 신뢰도 점수)을 분석하고 역추적함으로써 원본 데이터를 재구성해냅니다.주요 목표: 모델이 학습한 민감한 정보(개인정보, 의료 기록, 금융 데이..

혼란도(Perplexity, PPL)

혼란도는 언어 모델(LM)이 텍스트를 얼마나 잘 예측하는지 측정하는 표준 지표입니다. 이름 그대로, 모델이 특정 단어 시퀀스(문장)를 보고 얼마나 '당황했는지' 또는 '혼란스러워했는지'를 수치화한 것입니다.PPL이 낮을수록 (Less perplexed) 모델이 해당 텍스트의 구조를 잘 이해하고 다음 단어를 높은 확률로 정확하게 예측했다는 의미입니다. (성능이 좋음)PPL이 높을수록 (More perplexed) 모델이 해당 텍스트를 예측하는 데 어려움을 겪었으며, 실제 정답 단어에 매우 낮은 확률을 할당했다는 의미입니다. (성능이 나쁨)1. 직관적인 이해: "평균적인 선택지의 개수"PPL을 가장 쉽게 이해하는 방법은 "모델이 다음 단어를 예측할 때 평균적으로 느끼는 유효한 선택지의 개수"라고 생각하는 것..

정보 보안 vs. PETs: 데이터를 '지키는' 기술과 '안전하게 활용하는' 기술

정보 보안 기술과 개인정보보호 강화 기술(PETs)은 데이터를 보호한다는 공통점을 갖지만, 목표와 범위, 핵심 기능에서 뚜렷한 차이를 보입니다. 정보 보안 기술이 외부의 위협으로부터 데이터라는 성을 지키는 '견고한 방패'라면, PETs는 성 안의 중요한 개인정보를 보호하면서도 안전하게 바깥과 교류(활용)할 수 있도록 길을 열어주는 '마법 열쇠'에 비유할 수 있습니다. 핵심 목표의 차이 가장 큰 차이는 기술이 추구하는 핵심 목표에 있습니다. 정보 보안 기술: 정보의 기밀성(Confidentiality), 무결성(Integrity), 가용성(Availability), 즉 '정보 보안의 3요소(CIA Triad)' 보장을 최우선으로 합니다. 허가되지 않은 접근을 막고, 데이터 위변조를 방지하며, 필요할 때 언..

EEG 미시상태(Microstate): 생각의 원자

'EEG 미시상태(Microstate)'를 "생각의 원자(Atoms of thought)"라고 부르는 이유와 그 구체적인 내용에 대해 설명합니다.1. EEG 미시상태란 무엇인가? 먼저, EEG(뇌파)는 두피에 전극을 붙여 뇌의 수많은 뉴런 그룹이 동시에 활동하며 발생하는 전기장(Electric Field)을 측정하는 기술입니다. EEG 미시상태(Microstate)는 이 뇌 전체의 전기장(Electric Field)이 순간적으로 안정된 상태를 유지하는 특정 공간적 패턴(Spatial Pattern)을 말합니다.이 '안정된 패턴'은 약 60~120밀리초(ms) (1초의 1/10초 내외)라는 매우 짧은 시간 동안 유지됩니다. 그러다가, 이 패턴은 다른 안정된 패턴으로 순간적으로 '도약'(abruptly tr..

뇌의 동적 상태와 확률적 전환: 이론적 배경 및 실험적 증거

다음은 뇌의 미시/거시 상태 및 확률적 도약 개념을 지지하는 주요 이론적 배경과 구체적인 실험 결과들을 정리한 문서입니다.1. 개요 뇌를 정적인 회로가 아닌, 끊임없이 변화하는 동적 시스템(Dynamic System)으로 이해하는 것은 현대 뇌과학의 핵심 패러다임입니다. 이 관점에서 "생각"이나 "감정" 같은 뇌의 거시적 상태(Macrostate)는, 수십억 개 뉴런의 순간적인 활동 패턴(Microstate)들이 통계적으로 모여 형성된 준안정 상태(Metastable State)로 간주됩니다. 의식의 흐름은 뇌가 하나의 준안정 상태(하나의 '생각')에 잠시 머무르다가, 내재된 노이즈(noise)나 외부 자극에 의해 확률적으로 다른 상태로 '도약'(Transition)하는 과정으로 설명됩니다. 이는 통계역..