푸아송분포 5

푸아송 분포 -> 지수 분포

지수 분포의 수식을 유도하는 가장 논리적이고 표준적인 방법은 푸아송 과정(Poisson Process)에서 출발하는 것입니다. 지수 분포는 '사건이 발생할 때까지 걸리는 시간'에 대한 분포이고, 푸아송 분포는 '특정 시간 동안 발생하는 사건의 횟수'에 대한 분포입니다. 이 둘은 동전의 양면과 같습니다. 이 관계를 이용하여 지수 분포의 확률 밀도 함수(PDF)인 $f(t) = \lambda e^{-\lambda t}$를 유도해 보겠습니다. 1. 전제 조건: 푸아송 분포단위 시간당 평균 $\lambda$번 발생하는 사건이 있다고 가정합니다. 시간 $t$ 동안 사건이 총 $k$번 발생할 확률 $P(N(t)=k)$는 푸아송 분포를 따르며 다음과 같습니다. $$P(N(t) = k) = \frac{(\lambda ..

이항분포 -> 푸아송 분포

푸아송 분포(Poisson Distribution)는 이항분포(Binomial Distribution)의 특수한 극한 형태로 유도하는 것이 가장 일반적이고 직관적입니다. 단위 시간(또는 단위 공간) 안에 어떤 사건이 몇 번 발생할 것인지를 표현하는 이 분포는, "시행 횟수($n$)는 무수히 많고, 발생 확률($p$)은 매우 희박할 때"의 확률 분포입니다. 다음은 이항분포에서 출발하여 푸아송 분포의 수식을 유도하는 단계별 과정입니다.1. 기본 설정: 이항분포에서 출발먼저, 확률 변수 $X$가 시행 횟수 $n$, 성공 확률 $p$인 이항분포를 따른다고 가정합니다.$$X \sim B(n, p)$$이때 $k$번 성공할 확률 질량 함수(PMF)는 다음과 같습니다.$$P(X=k) = \binom{n}{k} p^k ..

이항 분포에서 Non-IID까지: 확률 분포의 연결 고리와 응용

1) 이항 분포 -> 2) 푸아송 분포 -> 3) 지수 분포 -> 4) 감마 분포 -> 5) 디리클레 분포 -> 6) Non-IID 데이터 시뮬레이션 확률 분포들이 서로 어떻게 연결되어 있는지 이해하는 것은 통계적 모델링과 데이터 시뮬레이션, 특히 머신러닝의 데이터 분포를 이해하는 데 매우 중요합니다. 위 여섯 단계는 '이산(Discrete)에서 연속(Continuous)으로', 그리고 '단일 사건에서 다변량 비율(Multivariate Proportion)로' 확장되는 흐름을 가지고 있습니다. 이 문서에서는 각 단계의 핵심 개념과 수식적 관계, 그리고 마지막으로 이를 활용한 Non-IID 데이터 시뮬레이션까지 설명합니다.1. 이항 분포(Binomial) $\rightarrow$ 푸아송 분포(Poisso..

독일 V2 로켓과 런던 폭격 - 푸아송 분포와 카이제곱 검정

아래 자료들을 참고하면서 실습을 하였습니다.AN APPLICATION OF THE POISSON DISTRIBUTION, by R. D. CLARKEThe flying bomb and the actuary - Royal Statistical Society, Wiley푸아송 분포실제값n_squares = 576n_bombs = 537# 구역당 떨어진 폭탄 수의 평균m = n_bombs / n_squaresprint(f'{m:.3f}')0.932# 구역당 떨어진 폭탄 수n_bombs_per_square = [0, 1, 2, 3, 4, 5]# 해당 구역 수 (관찰도수)observed_num_of_squares = [229, 211, 93, 35, 7, 1]print(f'# of squares: {sum(obs..

독일 V2 로켓과 런던 폭격 - 푸아송 분포 응용

관심을 가졌던 사항은 2차 세계 대전 말기 독일 V2 로켓에 의한 런던 폭격 지점의 분포와 푸아송 분포 응용 사례였는데 우연히 접한 기사를 흥미있게 읽다가 오류로 의심되는 부분을 발견하고 이를 확인하는 과정에서 글을 쓰게 되었습니다.기사 인용- [문학이 사랑한 통계⑬] 로저 멕시코와 함께하는 확률론 강의, 2019.01.03, 시사위크도서 내용 중 일부 - 토머스 핀천, 중력의 무지개, 이상국 옮김, 새물결로저는 그녀에게 V폭탄의 통계에 대해 애써 설명했다. 천사의 눈에나 보일 영국 지도 안의 분포와 이 아래 인간의 눈에 보이는, 그들 자신이 살아남을 기회의 차이에 대해.“그러나 이미 폭격을 몇 번이나 받은 곳도 있잖아. 그러니까-” “미안하지만 그게 바로 몬테카를로 오류라는 거야. 특정한 지역에 얼마나..