이 문제의 어려움은 간단한 지름길이나 공식이 없어서, 답을 찾으려면 사실상 거의 모든 가능성을 하나하나 확인해야 한다는 데 있습니다.시계 위에서의 점프 게임먼저, 모듈러 연산을 거대한 눈금을 가진 시계라고 상상해 보겠습니다. 일반 시계는 눈금이 12개지만, 암호학에서 사용하는 시계(법, p)는 그 눈금의 수가 상상도 할 수 없을 만큼 많습니다.쉬운 문제 (앞으로 점프하기)3을 5번 곱하고 17로 나눈 나머지(3^5 mod 17)를 구하는 것은 쉽습니다. 이는 "17칸짜리 시계에서, 3배씩 점프하는 규칙으로 5번 뛰어라. 최종 위치는 어디인가?"와 같습니다.3^1 → 33^2 → 93^3 → 27 ≡ 10 (mod 17)3^4 → 10 * 3 = 30 ≡ 13 (mod 17)3^5 → 13 * 3 = ..