2026/01/12 2

CMATH-02. 군(Group)과 체(Field)

​군: 더 일반적이고 단순한 구조군이 체보다 더 단순하고 일반적인 개념이며, 체를 정의하기 위한 기본적인 구성 요소로 사용됩니다.군: 단 하나의 연산과 네 가지 기본 규칙(닫힘, 결합법칙, 항등원, 역원)만 만족하면 성립합니다. 이 단순함 덕분에 대칭성을 가지는 거의 모든 대상(예: 도형의 회전, 분자 구조, 암호학)에서 군의 구조를 발견할 수 있습니다.체: 두 개의 연산(덧셈, 곱셈)이 필요하며, 각 연산에 대해 군과 유사한 규칙들(특히 교환법칙까지)을 만족해야 하고, 두 연산을 연결하는 분배법칙까지 성립해야 합니다. 조건이 훨씬 까다롭기 때문에, 체가 되는 대상은 군이 되는 대상보다 훨씬 제한적입니다.​쉽게 말해, 모든 체는 그 안에 군의 구조를 포함하고 있지만, 모든 군이 체가 되는 것은 아닙니다...

CMATH-01. 덧셈의 일반화된 수학적 정의

초등 산술에서 덧셈은 단순히 수를 합하는 과정이지만, 수학이 발전하면서 이 '더한다'는 행위의 본질적인 속성은 무엇인지, 그리고 이 속성을 숫자뿐만 아니라 벡터, 행렬, 함수 등 다른 대상에도 적용할 수 있는지 탐구하게 되었습니다. 이러한 탐구의 결과로, 현대 수학에서는 덧셈을 훨씬 더 추상적이고 강력한 개념으로 정의합니다. 덧셈의 수학적 정의는 크게 두 단계로 일반화됩니다. 첫 번째는 페아노 공리계를 이용한 자연수의 덧셈 정의이며, 두 번째는 이를 추상대수학의 구조로 확장하는 것입니다.1. 페아노 공리를 이용한 자연수의 덧셈 정의가장 근본적인 수 체계인 자연수(N=0,1,2,...)에서 덧셈은 다음의 두 가지 규칙으로 재귀적으로 정의됩니다. 이는 주세페 페아노가 제시한 공리계에 기반합니다.​ 여기서 S..