2025/10/12 4

DP-04. 데이터 처리 방식 및 구현 모델에 따른 분류

데이터 처리 방식에 따른 분류데이터에 직접 적용되어 프라이버시를 보장하는 핵심 알고리즘들입니다.노이즈 추가차등 정보보호에서 가장 보편적으로 사용되는 기법입니다. 핵심 원리는 데이터베이스에 대한 통계적 질의(Query)의 결과값에 수학적으로 생성된 '노이즈(noise)'라고 불리는 무작위 숫자를 더하여, 개별 데이터의 기여도를 모호하게 만드는 것입니다.작동 원리쿼리 실행: 데이터 분석가가 데이터베이스에 쿼리(예: "30대 사용자들의 평균 소득은 얼마인가?")를 실행하면, 시스템은 먼저 실제 결과값을 계산합니다.민감도(Sensitivity) 계산: 쿼리 결과가 데이터베이스 내의 단 한 사람의 데이터 변화에 의해 얼마나 크게 변할 수 있는지를 측정합니다. 예를 들어, 한 사람의 데이터를 추가하거나 제거했을 때..

DP-03. 차등의 의미 및 수학적 정의

차등의 의미차등 정보보호(Differential Privacy)에서 '차등(differential)'이라는 단어는 '차이(difference)'를 의미하며, 데이터베이스에 특정 개인의 데이터가 포함되거나 포함되지 않았을 때, 또는 변경되었을 때 발생하는 '결과의 차이를 제어'하는 기술의 핵심 개념을 직접적으로 나타냅니다.이 용어는 2006년 컴퓨터 과학자 신시아 드워크(Cynthia Dwork)가 발표한 논문 "Differential Privacy"에서 처음으로 공식화되었습니다. 이 개념의 핵심은 데이터베이스에 대한 질의(query) 결과가 특정 개인의 데이터 유무, 또는 변경에 따라 크게 달라지지 않도록 보장하는 것입니다. 즉, 데이터베이스에서 한 사람의 정보를 추가, 삭제, 또는 변경하더라도 분석 결..

SMPC-06. 연합학습에서 비밀 공유 적용 시 통신 부하

연합학습(Federated Learning)에서 보안 다자간 계산(Secure Multi-Party Computation, SMPC)의 한 기법인 덧셈 기반 비밀 공유를 적용할 때 발생하는 통신 오버헤드 증가에 대해 살펴보겠습니다.결론부터 말씀드리면, 통신 오버헤드는 참여하는 클라이언트(사용자) 수에 따라 이차적($O(N^2)$)으로 매우 크게 증가합니다.기본 연합학습 vs. 비밀 공유 적용 연합학습먼저 두 시나리오의 통신 방식을 비교해 보면 오버헤드 증가를 명확히 이해할 수 있습니다.기본 연합학습 (Federated Averaging):서버가 글로벌 모델을 클라이언트들에게 전송합니다.각 클라이언트는 자신의 로컬 데이터로 모델을 학습시킨 후, 업데이트된 모델 파라미터(또는 그래디언트)를 서버에만 전송합니..

SMPC-05. 다차원 벡터를 위한 덧셈 기반 비밀 공유 기법

보안 다자간 계산(Secure Multi-Party Computation, SMPC)에서 덧셈 기반 비밀 공유 기법을 다차원 벡터나 행렬에 적용하는 것은 기본적으로 벡터의 개별 요소 각각에 독립적으로 비밀 공유 기법을 적용하는 방식입니다.하나의 비밀 값을 여러 조각(share)으로 나누어 서로 다른 참여자에게 분배하는 것처럼, 다차원 벡터의 각 요소를 별개의 비밀 값으로 간주하고 각각에 대해 동일한 비밀 공유 절차를 진행하는 것입니다.작동 방식: 2x2 행렬 예시2차원 벡터 (행렬) $M$을 예로 들어보겠습니다.$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} $$이 행렬 $M$을 세 명의 참여자(P1, P2, P3)에게 덧셈 ..