전체 글 127

TR-02. 멀티-헤드 셀프 어텐션(Multi-head Self Attention)

멀티-헤드 어텐션은 트랜스포머의 핵심 부품으로, "여러 개의 다른 관점에서" 문장을 동시에 바라보는 메커니즘입니다. '어텐션 헤드' 하나가 스케일드 닷-프로덕트 어텐션 계산기 한 세트라고 생각하시면 됩니다. 멀티-헤드는 이 계산기를 여러 개(예: 8개) 복제하여 병렬로 실행하는 방식입니다.왜 '멀티-헤드'가 필요한가?'싱글-헤드' 어텐션(어텐션을 한 번만 계산)은 문장 내 단어 간의 한 가지 종류의 관계만 학습하는 경향이 있습니다. 예를 들어, "그녀는 강아지에게 밥을 주었다"라는 문장에서 어텐션이 '주어-동사' 관계(그녀는-주었다)에만 집중하도록 학습될 수 있습니다. 하지만 문장에는 다양한 관계가 존재합니다.주어-동사 관계 (그녀는 - 주었다)동사-목적어 관계 (주었다 - 밥을)수식 관계 (강아지 - ..

TR-01. 어텐션(Attention) 함수

트랜스포머의 어텐션(Attention) 함수는 문장이나 데이터 시퀀스 내의 여러 요소(예: 단어) 중 "지금 이 순간 어떤 요소에 집중(attention)해야 하는지"를 계산하는 메커니즘입니다.간단히 말해, 특정 단어를 처리할 때 문장 내의 다른 모든 단어와의 연관성 점수(relevance score)를 계산하고, 이 점수를 가중치로 사용하여 문맥을 파악하는 방식입니다.트랜스포머에서 사용하는 어텐션의 핵심은 "스케일드 닷-프로덕트 어텐션 (Scaled Dot-Product Attention)"입니다.스케일드 닷-프로덕트 어텐션의 3가지 핵심 요소어텐션 함수는 3가지 주요 벡터(혹은 행렬)를 입력으로 받습니다.Query (Q): 현재 처리 중인 요소(단어)를 나타냅니다. "내가 지금 찾고 싶은 것" 또는 ..

SMPC-03. 덧셈 기반 비밀 공유를 이용한 평균 연봉 계산 방법

보안 다자간 계산(SMPC)은 여러 참여자가 각자 가진 비밀 정보를 노출하지 않으면서, 그 정보들을 종합하여 특정 함수(예: 합산, 평균)의 결과만을 얻고자 할 때 사용하는 암호 기술입니다. '덧셈 기반 비밀 공유'는 이를 구현하는 간단하면서도 강력한 방법 중 하나입니다.핵심 원리: 비밀을 조각내어 분배하기핵심 아이디어는 각자의 비밀 값을 의미 없는 여러 개의 '조각(share)'으로 나눈 뒤, 이 조각들을 서로에게 교환하는 것입니다. 어떤 참여자도 비밀 값의 조각 하나만으로는 원래 정보를 추측할 수 없지만, 모든 조각이 모이면 원래 정보를 복원할 수 있습니다. 덧셈 기반 비밀 공유에서는 비밀 값 $S$를 $S = s1 + s2 + s3 + ...$ 와 같이 여러 조각의 합으로 표현합니다.계산 절차여기서..

SMPC-02. 보안 다자간 계산(SMPC)의 핵심: 비밀 공유 기법

1. 비밀 공유(Secret Sharing)란 무엇인가?비밀 공유는 하나의 비밀 정보를 여러 개의 조각으로 나누어 서로 다른 참여자들에게 분배하는 암호 기술입니다. 이 기술의 핵심은, 정해진 수(임계값) 이상의 조각이 모여야만 원래의 비밀 정보를 복원할 수 있고, 그보다 적은 수의 조각으로는 비밀에 대한 어떠한 정보도 얻을 수 없다는 점입니다. 이러한 특성 때문에 비밀 공유는 참여자들이 자신의 입력값을 직접 노출하지 않고도 공동의 함수를 계산할 수 있게 하는 보안 다자간 계산(SMPC)의 근간이 됩니다. 예를 들어, 여러 사람이 각자의 연봉을 공개하지 않으면서 평균 연봉을 계산하고 싶을 때, 각자의 연봉을 비밀 공유 기법으로 분배한 뒤 연산을 수행하면 안전하게 결과를 얻을 수 있습니다.2. 주요 비밀 공..

FL-06. 연합학습의 사이버 보안을 위한 공격 경로 분석

1. 개요: 연합학습과 새로운 공격 표면연합학습(Federated Learning, FL)은 데이터가 생성되는 위치(예: 모바일 기기, 병원)에서 직접 모델을 학습하여 개인정보를 중앙 서버로 전송하지 않고도 협력적으로 인공지능 모델을 구축하는 분산 학습 패러다임입니다. 데이터 프라이버시를 강화하는 혁신적인 기술로 주목받고 있지만, 전통적인 중앙 집중형 머신러닝과는 다른 새로운 공격 표면(Attack Surface)을 노출합니다. 연합학습의 보안을 이해하기 위해서는 데이터가 아닌 '모델 업데이트(가중치, 그래디언트)'가 네트워크를 통해 교환된다는 점을 인지해야 합니다. 공격자는 이 교환 과정의 각 단계에 개입하여 모델의 무결성(Integrity), 가용성(Availability), 기밀성(Confident..