선형대수학에서 행렬은 단순히 숫자의 배열이 아니라, 벡터를 다른 벡터로 변환하는 '선형 변환'을 나타냅니다. 행렬식, 고유값, 계수는 이러한 변환의 성질을 파악하는 데 도움을 주는 핵심적인 도구들입니다.1. 행렬식 (Determinant)행렬식은 정사각행렬에 대해서만 정의되는 하나의 스칼라 값입니다. 행렬 $A$의 행렬식은 $\det(A)$ 또는 $|A|$로 표기합니다.기하학적 의미: 행렬식이란 선형 변환이 공간을 얼마나 '확장' 또는 '축소'시키는지를 나타내는 '배율'입니다.2x2 행렬: 변환 후 단위 정사각형이 이루는 평행사변형의 넓이.3x3 행렬: 변환 후 단위 정육면체가 이루는 평행육면체의 부피.만약 행렬식의 값이 0이라면, 해당 변환은 공간을 더 낮은 차원으로 '납작하게' 만듭니다 (예: 3D ..