딥러닝의 학습 과정은 고차원 공간(파라미터 공간)에서 에너지 포텐셜(Loss Function)이 가장 낮은 지점을 찾아가는 과정과 같습니다. PyTorch는 이 과정을 효율적으로 수행하기 위해 동적 계산 그래프(Dynamic Computational Graph)라는 개념을 사용합니다. MNIST 분류 모델을 예로 들어, 훈련 루프 내부에서 일어나는 일을 단계별로 해부해 보겠습니다.import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transformsfrom torch.utils.data import DataLoader# 1. 데이터셋 준비 (MNIST)# 텐서 변환 및 정규화transfor..