FedTensor

  • 홈
  • 태그
  • 방명록

autograd 1

PyTorch 딥러닝 훈련 메커니즘과 Autograd 이해

딥러닝의 학습 과정은 고차원 공간(파라미터 공간)에서 에너지 포텐셜(Loss Function)이 가장 낮은 지점을 찾아가는 과정과 같습니다. PyTorch는 이 과정을 효율적으로 수행하기 위해 동적 계산 그래프(Dynamic Computational Graph)라는 개념을 사용합니다. MNIST 분류 모델을 예로 들어, 훈련 루프 내부에서 일어나는 일을 단계별로 해부해 보겠습니다.import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transformsfrom torch.utils.data import DataLoader# 1. 데이터셋 준비 (MNIST)# 텐서 변환 및 정규화transfor..

인공지능/신경망 이해 2025.12.04
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

secagg+, 이질적데이터, 안전한집계, 차분프라이버시, 신경망, 데이터분석, 경사하강법, 감마분포, 기억, map, 베이지안추론, non-iid, 로지스틱회귀, 신경세포, 뇌가소성, 사이버보안, 지수분포, 비밀공유, 전역민감도, 프라이버시, 차등정보보호, 인접데이터셋, 보안다자간계산, 개인정보보호, 푸아송분포, 연합학습, 학습, 최소작용의원리, smpc, 트랜스포머,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바