FedTensor

  • 홈
  • 태그
  • 방명록

호환성 1

연합학습 도입 시 기존 인프라 호환성 고려사항

연합학습은 데이터를 중앙 서버로 이동시키지 않고, 데이터가 위치한 각 디바이스(또는 사일로)에서 로컬 모델을 학습시킨 후, 모델의 업데이트 값(예: 가중치, 그래디언트)만을 중앙 서버로 전송하여 글로벌 모델을 업데이트하는 분산형 머신러닝 방식입니다. 이러한 'Code-to-Data' 접근 방식은 데이터 프라이버시를 획기적으로 향상시키지만, 기존의 'Data-to-Code' 중앙 집중식 인프라와는 데이터가 아닌 학습 코드(모델)가 이동한다는 점에서 근본적으로 다릅니다. 따라서 연합학습을 성공적으로 도입하기 위해서는 기존 IT 인프라와의 호환성을 면밀히 검토하고 전략을 수립해야 합니다. 주요 고려사항은 다음과 같습니다.1. 데이터 인프라 (Data Infrastructure)데이터가 이동하지 않기 때문에, ..

연합학습/구축 방안 2025.11.06
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

로지스틱회귀, 푸아송분포, 지수분포, 학습, 인접데이터셋, 경사하강법, 이질적데이터, 비밀공유, 트랜스포머, secagg+, non-iid, 연합학습, 기억, 감마분포, 신경망, 보안다자간계산, 개인정보보호, 데이터분석, 차등정보보호, 안전한집계, 사이버보안, 전역민감도, 차분프라이버시, 신경세포, 최소작용의원리, 베이지안추론, smpc, map, 뇌가소성, 프라이버시,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바