FedTensor

  • 홈
  • 태그
  • 방명록

특이값분해 1

데이터 분석을 위한 7가지 전통적인 차원 축소 기법

데이터 분석에서 차원 축소는 고차원의 데이터셋을 저차원으로 변환하여 분석을 용이하게 하고, 시각화하며, 계산 비용을 줄이는 중요한 과정입니다. 다음은 널리 사용되는 7가지 전통적인 차원 축소 기법입니다.1. 주성분 분석 (Principal Component Analysis - PCA)주성분 분석(PCA)은 가장 널리 알려진 비지도 학습 기반의 차원 축소 기법입니다. 데이터의 분산(variance)을 가장 잘 보존하는 새로운 좌표축, 즉 '주성분(Principal Component)'을 찾습니다. 첫 번째 주성분은 데이터의 가장 큰 분산을 설명하며, 두 번째 주성분은 첫 번째와 직교하면서 나머지 분산을 가장 잘 설명하는 축입니다. 이 과정을 통해 원본 데이터의 정보를 최대한 유지하면서 차원을 줄일 수 있습..

데이터 분석/차원 축소 2025.09.29
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

차분프라이버시, 차등정보보호, 연합학습, 개인정보보호, 학습, 프라이버시, 로지스틱회귀, 보안다자간계산, 데이터분석, 트랜스포머, 베이지안추론, 뇌가소성, 전역민감도, 사이버보안, secagg+, 푸아송분포, 경사하강법, non-iid, 비밀공유, 이질적데이터, smpc, 인접데이터셋, 신경세포, 신경망, 지수분포, 기억, 감마분포, 최소작용의원리, 안전한집계, map,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바