FedTensor

  • 홈
  • 태그
  • 방명록

지역민감도 1

DP-05. 차등 정보보호의 핵심 개념: 인접 데이터셋

차등 정보보호(Differential Privacy)는 "어떤 한 개인이 데이터셋에 포함되거나 포함되지 않더라도, 분석 결과는 거의 바뀌지 않아야 한다"는 강력한 개인정보보호 모델입니다. 여기서 '거의 바뀌지 않음'을 수학적으로 엄밀하게 정의하기 위해 사용되는 핵심 도구가 바로 인접 데이터셋(Adjacent Datasets)입니다. 간단히 말해, 인접 데이터셋이란 단 한 사람의 데이터만 다른 두 개의 데이터셋을 의미합니다.인접 데이터셋의 두 가지 주요 정의인접 데이터셋을 정의하는 방식은 크게 두 가지로 나뉩니다. 어떤 시나리오에서 개인정보를 보호하고 싶은지에 따라 적절한 정의를 사용합니다.1. 레코드 추가/삭제 (비제한적 인접성, Unbounded Adjacency)가장 일반적인 정의입니다. 두 데이터셋..

개인정보보호 강화 기술/차등 정보보호 2025.10.14
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

secagg+, 비밀공유, 개인정보보호, map, 뇌가소성, 지수분포, 신경세포, 트랜스포머, 프라이버시, 경사하강법, 인접데이터셋, smpc, non-iid, 차분프라이버시, 연합학습, 로지스틱회귀, 보안다자간계산, 푸아송분포, 사이버보안, 신경망, 안전한집계, 기억, 학습, 감마분포, 데이터분석, 차등정보보호, 최소작용의원리, 이질적데이터, 전역민감도, 베이지안추론,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바