지수분포 4

지수 분포의 이해

1. 직관적인 이해: 이산 시간에서 연속 시간으로10분에 평균 1대꼴로 오는 버스가 있습니다.단위 시간(여기서는 1분) 당 버스 도착 확률(비율): $\lambda = \frac{1}{10} = 0.1$A는 오전 9시에 버스 정류장에 도착하여 버스를 기다립니다. 버스가 도착할 시간을 1분 단위의 구간으로 나누어 생각해 봅시다.0~1분 (구간 1)1~2분 (구간 2)...각 1분 단위 구간마다 버스가 도착할 확률을 $p = 0.1$이라고 가정해 봅시다. (반대로 도착하지 않을 확률은 $1-p = 0.9$입니다.) A가 $t$분 시점까지 계속 기다리고 있을 확률(버스가 아직 도착하지 않았을 확률)을 계산해 보겠습니다.1분 후에도 못 탔을 확률:첫 번째 구간에서 안 옴: $(1-p) = 0.9$2분 후에도 못..

지수 분포 -> 감마 분포

지수 분포가 '첫 번째 사건'이 발생할 때까지의 시간이라면, 감마 분포(Gamma Distribution)는 이를 일반화하여 '$k$번째 사건'이 발생할 때까지의 시간을 모델링합니다. 지수 분포 유도 때와 마찬가지로 푸아송 과정(Poisson Process)을 기반으로 아주 직관적인 방법(미소 구간 확률)을 사용하여 유도할 수 있습니다.1. 목표 설정: 무엇을 구하는가?상황: 사건이 평균적으로 단위 시간당 $\lambda$회 발생하는 푸아송 과정.확률 변수 $T$: $k$번째 사건이 발생할 때까지 걸리는 시간.목표: $T$의 확률 밀도 함수(PDF) $f(t)$ 구하기.2. 직관적 유도 (미소 구간 접근법)확률 밀도 함수 $f(t)$의 정의를 생각해 봅시다. $f(t)dt$는 '정확히 시간 $t$ 시점에..

푸아송 분포 -> 지수 분포

지수 분포의 수식을 유도하는 가장 논리적이고 표준적인 방법은 푸아송 과정(Poisson Process)에서 출발하는 것입니다. 지수 분포는 '사건이 발생할 때까지 걸리는 시간'에 대한 분포이고, 푸아송 분포는 '특정 시간 동안 발생하는 사건의 횟수'에 대한 분포입니다. 이 둘은 동전의 양면과 같습니다. 이 관계를 이용하여 지수 분포의 확률 밀도 함수(PDF)인 $f(t) = \lambda e^{-\lambda t}$를 유도해 보겠습니다. 1. 전제 조건: 푸아송 분포단위 시간당 평균 $\lambda$번 발생하는 사건이 있다고 가정합니다. 시간 $t$ 동안 사건이 총 $k$번 발생할 확률 $P(N(t)=k)$는 푸아송 분포를 따르며 다음과 같습니다. $$P(N(t) = k) = \frac{(\lambda ..

이항 분포에서 Non-IID까지: 확률 분포의 연결 고리와 응용

1) 이항 분포 -> 2) 푸아송 분포 -> 3) 지수 분포 -> 4) 감마 분포 -> 5) 디리클레 분포 -> 6) Non-IID 데이터 시뮬레이션 확률 분포들이 서로 어떻게 연결되어 있는지 이해하는 것은 통계적 모델링과 데이터 시뮬레이션, 특히 머신러닝의 데이터 분포를 이해하는 데 매우 중요합니다. 위 여섯 단계는 '이산(Discrete)에서 연속(Continuous)으로', 그리고 '단일 사건에서 다변량 비율(Multivariate Proportion)로' 확장되는 흐름을 가지고 있습니다. 이 문서에서는 각 단계의 핵심 개념과 수식적 관계, 그리고 마지막으로 이를 활용한 Non-IID 데이터 시뮬레이션까지 설명합니다.1. 이항 분포(Binomial) $\rightarrow$ 푸아송 분포(Poisso..