이항분포 2

이항분포 -> 푸아송 분포

푸아송 분포(Poisson Distribution)는 이항분포(Binomial Distribution)의 특수한 극한 형태로 유도하는 것이 가장 일반적이고 직관적입니다. 단위 시간(또는 단위 공간) 안에 어떤 사건이 몇 번 발생할 것인지를 표현하는 이 분포는, "시행 횟수($n$)는 무수히 많고, 발생 확률($p$)은 매우 희박할 때"의 확률 분포입니다. 다음은 이항분포에서 출발하여 푸아송 분포의 수식을 유도하는 단계별 과정입니다.1. 기본 설정: 이항분포에서 출발먼저, 확률 변수 $X$가 시행 횟수 $n$, 성공 확률 $p$인 이항분포를 따른다고 가정합니다.$$X \sim B(n, p)$$이때 $k$번 성공할 확률 질량 함수(PMF)는 다음과 같습니다.$$P(X=k) = \binom{n}{k} p^k ..

이항 분포에서 Non-IID까지: 확률 분포의 연결 고리와 응용

1) 이항 분포 -> 2) 푸아송 분포 -> 3) 지수 분포 -> 4) 감마 분포 -> 5) 디리클레 분포 -> 6) Non-IID 데이터 시뮬레이션 확률 분포들이 서로 어떻게 연결되어 있는지 이해하는 것은 통계적 모델링과 데이터 시뮬레이션, 특히 머신러닝의 데이터 분포를 이해하는 데 매우 중요합니다. 위 여섯 단계는 '이산(Discrete)에서 연속(Continuous)으로', 그리고 '단일 사건에서 다변량 비율(Multivariate Proportion)로' 확장되는 흐름을 가지고 있습니다. 이 문서에서는 각 단계의 핵심 개념과 수식적 관계, 그리고 마지막으로 이를 활용한 Non-IID 데이터 시뮬레이션까지 설명합니다.1. 이항 분포(Binomial) $\rightarrow$ 푸아송 분포(Poisso..