푸아송 분포(Poisson Distribution)는 이항분포(Binomial Distribution)의 특수한 극한 형태로 유도하는 것이 가장 일반적이고 직관적입니다. 단위 시간(또는 단위 공간) 안에 어떤 사건이 몇 번 발생할 것인지를 표현하는 이 분포는, "시행 횟수($n$)는 무수히 많고, 발생 확률($p$)은 매우 희박할 때"의 확률 분포입니다. 다음은 이항분포에서 출발하여 푸아송 분포의 수식을 유도하는 단계별 과정입니다.1. 기본 설정: 이항분포에서 출발먼저, 확률 변수 $X$가 시행 횟수 $n$, 성공 확률 $p$인 이항분포를 따른다고 가정합니다.$$X \sim B(n, p)$$이때 $k$번 성공할 확률 질량 함수(PMF)는 다음과 같습니다.$$P(X=k) = \binom{n}{k} p^k ..