CIFAR-10 데이터셋(10개의 클래스, $32 \times 32$ 픽셀 이미지)은 딥러닝 모델의 성능을 평가하는 가장 대중적인 벤치마크 중 하나입니다. 현재 시점에서 가장 성능이 뛰어난(State-of-the-Art, SOTA) 모델들과 실무에서 사용하기 좋은 고효율 모델들을 분류하여 정리했습니다.1. 최고 성능 모델군 (State-of-the-Art: Transformers)현재 CIFAR-10 리더보드의 최상위권은 대부분 Transformer 기반 모델들이 차지하고 있습니다. 이들은 주로 대규모 데이터셋(ImageNet-21k, JFT-300M 등)으로 사전 학습(Pre-training)된 후 CIFAR-10으로 미세 조정(Fine-tuning)하는 방식을 사용합니다.Vision Transform..