FedTensor

  • 홈
  • 태그
  • 방명록

이미지분류 1

CIFAR-10 모델 성능 분석 및 SOTA 트렌드 가이드

CIFAR-10 데이터셋(10개의 클래스, $32 \times 32$ 픽셀 이미지)은 딥러닝 모델의 성능을 평가하는 가장 대중적인 벤치마크 중 하나입니다. 현재 시점에서 가장 성능이 뛰어난(State-of-the-Art, SOTA) 모델들과 실무에서 사용하기 좋은 고효율 모델들을 분류하여 정리했습니다.1. 최고 성능 모델군 (State-of-the-Art: Transformers)현재 CIFAR-10 리더보드의 최상위권은 대부분 Transformer 기반 모델들이 차지하고 있습니다. 이들은 주로 대규모 데이터셋(ImageNet-21k, JFT-300M 등)으로 사전 학습(Pre-training)된 후 CIFAR-10으로 미세 조정(Fine-tuning)하는 방식을 사용합니다.Vision Transform..

인공지능/이미지 분류 2025.12.04
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

non-iid, 트랜스포머, 베이지안추론, 최소작용의원리, 신경망, 개인정보보호, 이질적데이터, 감마분포, 학습, secagg+, 차등정보보호, 사이버보안, 기억, 푸아송분포, 전역민감도, 연합학습, 안전한집계, 뇌가소성, 데이터분석, 보안다자간계산, 차분프라이버시, 지수분포, map, 인접데이터셋, smpc, 경사하강법, 비밀공유, 신경세포, 프라이버시, 로지스틱회귀,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바