로지스틱 회귀 모델에서 독립 변수($x$)의 값이 1 증가할 때 증가 전후의 오즈(Odds) 값의 비율, 즉 오즈비(Odds Ratio)는 $x$의 계수를 지수로 취한 값($e^\text{계수}$)이다.왜 $e^{\text{계수}}$가 오즈비인가?설명을 위해 로지스틱 회귀의 기본 식에서 시작하겠습니다. (독립 변수가 $x$ 하나라고 가정) 1. 로지스틱 회귀의 기본 식 (로짓 변환) 로지스틱 회귀는 '성공' 확률 $p$가 아니라, '성공'의 로그-오즈(Log-Odds)를 $x$에 대한 선형식으로 모델링합니다.$$log(Odds) = log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1x$$$\beta_0$: 절편 ($x=0$일 때의 로그-오즈)$\beta_1$: $x..