FedTensor

  • 홈
  • 태그
  • 방명록

공격표면 1

FL-05. 연합학습의 사이버 보안을 위한 공격 표면 분석

1. 개요연합학습(Federated Learning, FL)은 데이터를 중앙 서버로 전송하지 않고, 분산된 각 클라이언트(예: 스마트폰, 병원)에서 로컬로 모델을 학습한 뒤, 모델의 변경사항(가중치, 그래디언트 등)만을 서버로 보내 집계하는 분산형 머신러닝 패러다임입니다. 이 방식은 데이터 프라이버시를 근본적으로 강화할 수 있어 각광받고 있지만, 동시에 기존의 중앙 집중식 학습 환경과는 다른 독특하고 복잡한 공격 표면(Attack Surface)을 형성합니다. 이러한 배경에서 본 문서는 연합학습의 공격 표면을 클라이언트, 서버, 통신 채널, 모델의 네 가지 핵심 영역으로 나누어 분석하고, 각 영역에서 발생하는 대표적인 공격 기법과 이를 완화하기 위한 다층적 방어 전략을 순차적으로 제시합니다.2. 연합학습..

연합학습/사이버 보안 2025.10.10
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

경사하강법, 프라이버시, 학습, 전역민감도, 개인정보보호, 데이터분석, 로지스틱회귀, 푸아송분포, 최소작용의원리, map, 연합학습, 뇌가소성, 인접데이터셋, 베이지안추론, 비밀공유, non-iid, smpc, 트랜스포머, 보안다자간계산, 차등정보보호, 신경망, 지수분포, 안전한집계, 사이버보안, 차분프라이버시, 기억, 신경세포, 이질적데이터, secagg+, 감마분포,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바