1. 개요: 연합학습과 새로운 공격 표면연합학습(Federated Learning, FL)은 데이터가 생성되는 위치(예: 모바일 기기, 병원)에서 직접 모델을 학습하여 개인정보를 중앙 서버로 전송하지 않고도 협력적으로 인공지능 모델을 구축하는 분산 학습 패러다임입니다. 데이터 프라이버시를 강화하는 혁신적인 기술로 주목받고 있지만, 전통적인 중앙 집중형 머신러닝과는 다른 새로운 공격 표면(Attack Surface)을 노출합니다. 연합학습의 보안을 이해하기 위해서는 데이터가 아닌 '모델 업데이트(가중치, 그래디언트)'가 네트워크를 통해 교환된다는 점을 인지해야 합니다. 공격자는 이 교환 과정의 각 단계에 개입하여 모델의 무결성(Integrity), 가용성(Availability), 기밀성(Confident..