경사하강법 4

오류 역전파 및 기울기 계산 과정

개요붓꽃 데이터를 대상으로 꽃의 종류를 분류다층 퍼셉트론(Multi-Layer Perceptron, MLP) 모델의 오류 역전파 및 기울기 계산 과정 설명데이터셋붓꽃 데이터꽃 종류setosa (50개)versicolor (50개)virginica (50개)측정 항목sepal length (cm): 꽃받침 길이sepal width (cm): 꽃받침 넓이petal length (cm): 꽃잎 길이petal width (cm): 꽃잎 넓이문제 정의붓꽃의 종류가 무엇인지 표시되어 있는 데이터 세트를 사용하여 붓꽃 분류 기능을 학습합니다.새로운 붓꽃 데이터에 대하여 종류가 무엇인지 예측합니다.모델 함수 정의입력층의 크기: 4은닉층의 크기: 8 (다른 값으로 지정할 수도 있음)출력층의 크기: 3비용 함수 정의비용 ..

경사하강법에서 손실값의 변화

모델 파라미터 변경에 따른 손실의 변화율 손실 함수 위의 한 지점(현재 파라미터)에서 손실 값의 변화가 가장 큰 방향을 계산할 수 있습니다. 이를 기울기(Gradient)라고 합니다. 즉, 기울기는 '특정 파라미터를 조금 변경했을 때, 손실 값이 얼마나 변하는가’를 나타내는 값입니다. 손실을 줄이는 방향으로 모델 파라미터 수정 기울기는 손실이 가장 크게 '증가’하는 방향을 가리킵니다. 우리의 목표는 손실을 '감소’시키는 것이므로, 기울기의 반대 방향으로 파라미터를 조금씩 이동시켜야 합니다.경사하강법의 종류와 손실 값의 변화 경사하강법은 기울기를 계산할 때 사용하는 데이터의 양에 따라 크게 세 가지 방식으로 나뉩니다. 이 방식에 따라 손실 값의 변화 양상과 학습 효율성이 크게 달라집니다.구분설명Batch ..

로지스틱 회귀: 모델, 비용 함수, 파라미터 찾기

1. 문제 정의1.1. 데이터셋로지스틱 회귀에 대한 이해를 돕기 위하여 다음과 같이 두 종류의 데이터셋을 준비하고 설명을 진행합니다.Dataset-A: $$\begin{flalign} x&=\left[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 \right] \\ y&=[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1] \end{flalign}$$Dataset-B: $$\begin{flalign} x&=\left[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 \right] \\ y&=[0,0,0,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1] \end{flalign}$$위에서 ..

선형 회귀 분석의 이해

1. 회귀 분석이란?회귀 분석(Regression Analysis)은 변수들 사이의 관계를 모델링하는 통계적 방법입니다. 가장 단순한 예로, '집의 크기'를 알 때 '집의 가격'을 예측하는 모델을 만들 수 있습니다. 이처럼 하나의 변수(독립 변수)를 사용하여 다른 변수(종속 변수)의 값을 예측하는 것이 회귀 분석의 핵심입니다. ​회귀 분석 과정은 다음 세 단계로 요약할 수 있습니다.데이터 준비: 예측 모델을 학습시키기 위한 훈련 데이터 세트 $(x, y)$를 준비합니다. 여기서 $x$는 예측에 사용될 독립 변수이고, $y$는 예측하고자 하는 종속 변수입니다.모델 학습: 훈련 데이터를 가장 잘 표현하는 수학적 모델을 정의하고, 데이터에 가장 근접한 예측을 하는 최적의 파라미터(parameter)를 찾습니다..