연합학습/사이버 보안 9

FL-09. 방어 전략: 시빌 공격에 대한 방어

시빌 공격(Sybil Attack)은 하나의 공격자가 수많은 가짜 신원(Sybils)을 생성하여, 분산 시스템이나 P2P 네트워크에서 자신이 다수인 것처럼 위장하고 부당한 영향력을 행사하려는 공격입니다. 이 이름은 다중인격장애를 다룬 1973년작 소설 '시빌(Sybil)'에서 유래했습니다.1. 시빌 공격의 핵심 원리 대부분의 분산 시스템은 '1인 1표' 또는 '다수결'의 원칙에 따라 작동합니다. 시빌 공격은 이 점을 악용합니다.정상 시스템: 100명의 정직한 사용자와 1명의 공격자가 있다면, 공격자의 영향력은 1%에 불과합니다. 시빌 공격: 100명의 정직한 사용자가 있는 시스템에, 1명의 공격자가 1,000개의 가짜 계정(시빌)을 만들어 참여합니다. 이제 시스템은 1,100명의 "사용자"가 있는 것으로..

FL-08. 방어 전략: 기여도 평가

연합학습(Federated Learning)에서 기여도 평가(Contribution Measurement)는 시스템의 보안성, 공정성, 효율성을 높이는 데 핵심적인 방어 전략입니다. 이는 "어떤 클라이언트가 글로벌 모델 성능 향상에 '정직하게' 그리고 '유용하게' 기여했는가?"를 측정하는 기술입니다. 주요 목적은 다음과 같습니다. 프리라이딩(Free-riding) 방지: 학습에 기여하지 않으면서 고성능 모델만 받아 가려는 클라이언트를 식별합니다. 보안 위협 완화: 고의로 성능을 저하하거나 백도어를 심으려는 악의적인 업데이트(포이즈닝 공격)를 식별하고 그 영향을 줄입니다. 공정한 보상: 시스템에 많이 기여한 클라이언트에게 더 많은 보상(예: 인센티브, 다음 라운드 참여 우선권)을 제공합니다.가장 큰 어려움..

FL-07. 방어 전략: 견고한 집계 전략들

연합학습에서 견고한 집계 전략(Robust Aggregation Strategy)은 악의적인 클라이언트가 전송하는 비정상적인 업데이트(Outlier)로부터 글로벌 모델을 보호하기 위한 서버 측 방어 기법입니다. 기본적인 FedAvg는 모든 클라이언트의 업데이트를 '단순 평균'하기 때문에, 하나의 강력한 악성 업데이트만으로도 전체 글로벌 모델이 쉽게 오염될 수 있습니다(포이즈닝 공격). 견고한 집계 전략들은 "정직한 클라이언트의 업데이트는 (고차원 공간에서) 서로 유사한 경향을 보일 것이고, 악의적인 업데이트는 이들로부터 멀리 떨어져 있을 것"이라는 핵심 가정을 기반으로, 이러한 이상치를 식별하고 그 영향을 최소화하거나 완전히 제거합니다. 주요 견고한 집계 전략들은 다음과 같습니다.1. 절삭 평균 (Tri..

FL-06. 연합학습의 사이버 보안을 위한 공격 경로 분석

1. 개요: 연합학습과 새로운 공격 표면연합학습(Federated Learning, FL)은 데이터가 생성되는 위치(예: 모바일 기기, 병원)에서 직접 모델을 학습하여 개인정보를 중앙 서버로 전송하지 않고도 협력적으로 인공지능 모델을 구축하는 분산 학습 패러다임입니다. 데이터 프라이버시를 강화하는 혁신적인 기술로 주목받고 있지만, 전통적인 중앙 집중형 머신러닝과는 다른 새로운 공격 표면(Attack Surface)을 노출합니다. 연합학습의 보안을 이해하기 위해서는 데이터가 아닌 '모델 업데이트(가중치, 그래디언트)'가 네트워크를 통해 교환된다는 점을 인지해야 합니다. 공격자는 이 교환 과정의 각 단계에 개입하여 모델의 무결성(Integrity), 가용성(Availability), 기밀성(Confident..

FL-05. 연합학습의 사이버 보안을 위한 공격 표면 분석

1. 개요연합학습(Federated Learning, FL)은 데이터를 중앙 서버로 전송하지 않고, 분산된 각 클라이언트(예: 스마트폰, 병원)에서 로컬로 모델을 학습한 뒤, 모델의 변경사항(가중치, 그래디언트 등)만을 서버로 보내 집계하는 분산형 머신러닝 패러다임입니다. 이 방식은 데이터 프라이버시를 근본적으로 강화할 수 있어 각광받고 있지만, 동시에 기존의 중앙 집중식 학습 환경과는 다른 독특하고 복잡한 공격 표면(Attack Surface)을 형성합니다. 이러한 배경에서 본 문서는 연합학습의 공격 표면을 클라이언트, 서버, 통신 채널, 모델의 네 가지 핵심 영역으로 나누어 분석하고, 각 영역에서 발생하는 대표적인 공격 기법과 이를 완화하기 위한 다층적 방어 전략을 순차적으로 제시합니다.2. 연합학습..

FL-04. 연합학습의 사이버 보안을 위한 위협 모델링

1. 개요 연합학습(Federated Learning, FL)은 데이터가 생성된 위치(예: 모바일, 병원)에서 데이터를 버로 이동시키지 않고 머신러닝 모델을 훈련하는 분산형 AI 기술입니다. 이는 사용자의 개인정보를 보호하면서도 대규모 데이터를 활용할 수 있는 강력한 패러다임으로 주목받고 있으며, 이로 인해 기존과 다른 새로운 보안 위협에 직면하고 있습니다. 하지만 데이터가 중앙화되지 않는다는 특성은 기존의 데이터 센터 중심 보안 모델로는 대응하기 어려운 새로운 공격 벡터와 보안 취약점을 야기합니다. 따라서 연합학습 시스템을 안전하게 구축하고 운영하기 위해서는 잠재적 위협을 체계적으로 식별하고 분석하는 위협 모델링(Threat Modeling) 프로세스가 필수적입니다. 본 문서는 STRIDE 방법론을 활..

FL-03. 보안 모델: 일반적 정의와 연합학습에서의 적용

모든 디지털 시스템의 신뢰는 견고한 보안 설계에서 시작됩니다. 본 문서에서는 전통적인 보안 모델의 개념을 살펴보고, 데이터가 분산된 '연합 학습' 환경에서는 어떤 독특한 보안 모델이 요구되는지, 그리고 이를 강화하기 위한 기술은 무엇인지 심층적으로 알아봅니다. 1. 보안 모델(Security Model)의 일반적인 정의보안 모델이란 특정 시스템에서 '누가, 무엇을, 어떻게 할 수 있는가'를 정의하는 보안 정책(Security Policy)을 명문화하고 구현하기 위한 설계도입니다. 이는 시스템이 어떻게 보안 목표(기밀성, 무결성, 가용성 등)를 달성할 것인지를 명확하게 정의하는 규칙과 관행의 집합입니다. 보안 모델의 핵심 목적은 다음과 같습니다.정책 명문화: "어떤 주체(Subject)가 어떤 객체(Ob..

FL-02. 연합학습 보안 프레임워크: 체계적인 접근법

연합학습(Federated Learning, FL)은 데이터를 중앙 서버로 전송하지 않고, 각 클라이언트(예: 스마트폰, 병원)가 로컬에서 모델을 학습한 뒤, 그 결과(모델 업데이트)만을 중앙 서버에 공유하여 전체 모델을 개선하는 분산형 기계학습 방식입니다. 데이터가 로컬 환경을 벗어나지 않아 개인정보보호에 큰 장점이 있지만, 모델 업데이트 값 자체에 민감한 정보가 포함될 수 있으며, 시스템의 분산된 특성으로 인해 새로운 보안 위협이 발생할 수 있습니다. 따라서 본 문서는 연합학습 시스템을 안전하게 구축하고 운영하고자 하는 개발자 및 보안 설계자를 위해, 보안 모델 수립부터 위협 모델링, 그리고 핵심 방어 전략에 이르는 체계적인 접근법을 제시하는 것을 목표로 합니다.1. 보안 모델개념보안 모델은 시스템이..

FL-01. 연합학습 핵심 구조: 허브-앤-스포크 토폴로지

연합학습의 핵심 구조: 허브-앤-스포크 토폴로지연합학습(Federated Learning) 시스템의 가장 일반적인 구조는 허브-앤-스포크(Hub-and-Spoke) 토폴로지를 기반으로 합니다. 이는 중앙 서버(Hub)가 다수의 클라이언트(Spoke)와 연결되어 데이터 교환 없이 인공지능 모델을 훈련하는 분산형 학습 방식을 효율적으로 구현하는 핵심적인 구조입니다. 허브-앤-스포크 토폴로지란?허브-앤-스포크는 원래 물류 및 운송 네트워크에서 효율성을 극대화하기 위해 사용된 모델입니다. 중앙 집중식 허브를 통해 모든 물품이 모이고, 각 목적지(스포크)로 분산되는 방식입니다. 이 개념이 연합학습에 적용되면서 다음과 같은 구성 요소로 이루어진 시스템 아키텍처를 의미하게 되었습니다.허브 (Hub): 중앙 서버 전체..