수학 20

CMATH-02. 군(Group)과 체(Field)

​군: 더 일반적이고 단순한 구조군이 체보다 더 단순하고 일반적인 개념이며, 체를 정의하기 위한 기본적인 구성 요소로 사용됩니다.군: 단 하나의 연산과 네 가지 기본 규칙(닫힘, 결합법칙, 항등원, 역원)만 만족하면 성립합니다. 이 단순함 덕분에 대칭성을 가지는 거의 모든 대상(예: 도형의 회전, 분자 구조, 암호학)에서 군의 구조를 발견할 수 있습니다.체: 두 개의 연산(덧셈, 곱셈)이 필요하며, 각 연산에 대해 군과 유사한 규칙들(특히 교환법칙까지)을 만족해야 하고, 두 연산을 연결하는 분배법칙까지 성립해야 합니다. 조건이 훨씬 까다롭기 때문에, 체가 되는 대상은 군이 되는 대상보다 훨씬 제한적입니다.​쉽게 말해, 모든 체는 그 안에 군의 구조를 포함하고 있지만, 모든 군이 체가 되는 것은 아닙니다...

CMATH-01. 덧셈의 일반화된 수학적 정의

초등 산술에서 덧셈은 단순히 수를 합하는 과정이지만, 수학이 발전하면서 이 '더한다'는 행위의 본질적인 속성은 무엇인지, 그리고 이 속성을 숫자뿐만 아니라 벡터, 행렬, 함수 등 다른 대상에도 적용할 수 있는지 탐구하게 되었습니다. 이러한 탐구의 결과로, 현대 수학에서는 덧셈을 훨씬 더 추상적이고 강력한 개념으로 정의합니다. 덧셈의 수학적 정의는 크게 두 단계로 일반화됩니다. 첫 번째는 페아노 공리계를 이용한 자연수의 덧셈 정의이며, 두 번째는 이를 추상대수학의 구조로 확장하는 것입니다.1. 페아노 공리를 이용한 자연수의 덧셈 정의가장 근본적인 수 체계인 자연수(N=0,1,2,...)에서 덧셈은 다음의 두 가지 규칙으로 재귀적으로 정의됩니다. 이는 주세페 페아노가 제시한 공리계에 기반합니다.​ 여기서 S..

베이즈 추론 명확하게 이해하기: 강아지 몸무게 추정 (3/3)

사전 지식과 믿음In Reign’s case I do have additional information. I know that the last time I came to the vet she weighed in at 14.2 pounds. I also know that she doesn't feel noticeably heavier or lighter to me, although my arm is not a very sensitive scale. Because of this, I believe that she's about 14.2 pounds but might be a pound or two higher or lower. To represent this, I use a normal distributio..

베이즈 추론 명확하게 이해하기: 강아지 몸무게 추정 (2/3)

최대 우도 추정(Maximum Likelihood Estimation, MLE)실제 몸무게로 추정하는 w_actual 값을 더 다양하게 설정하고 우도분포 그래프를 그려봄으로써 실제 몸무게가 어떤 값을 가질 때 우도가 최대가 되는지 시각적으로 파악할 수 있습니다.w_actual_arr = np.arange(10, 20, 0.04)likelihood_arr = []for w_actual in w_actual_arr: likelihood = get_likelihood(w_actual, s_actual, w_measured_arr) likelihood_arr.append(likelihood)peak_location = w_actual_arr[np.argmax(likelihood_arr)]print(f..

베이즈 추론 명확하게 이해하기: 강아지 몸무게 추정 (1/3)

아래 글을 읽고 베이즈 추론의 핵심 개념을 명확하게 이해하기 위하여 이 문서를 작성합니다. 인용한 글은 인용 구역으로 표시하였습니다.How Bayesian inference works - Brandon Rohrer측정 몸무게, 실제 몸무게, 추정 몸무게 On our last visit, we got three measurements before she became unmanageable: 13.9 lb, 17.5 lb and 14.1 lb. There is a standard statistical interpretation for this. We can calculate the mean, standard deviation and standard error for this set of numbers and..

확률 분포 샘플링 방법

이 문서는 특정 확률 분포를 따르는 난수(샘플)를 추출하는 네 가지 주요 방법인 역변환법, 기각-채택법, 박스-뮬러 변환, MCMC에 대해 상세히 설명합니다.1. 역변환법 (Inverse Transform Method)가장 기본적이고 직관적인 방법으로, 누적 분포 함수(CDF)의 역함수를 이용합니다.기본 원리모든 누적 분포 함수 $F(x)$는 0과 1 사이의 값을 가집니다. 만약 $U$가 $(0, 1)$ 구간의 균등 분포(Uniform Distribution)를 따른다면, $X = F^{-1}(U)$는 $F$를 누적 분포 함수로 갖는 확률 변수가 됩니다.알고리즘목표 확률 분포의 PDF $f(x)$를 적분하여 CDF $F(x)$를 구합니다.$F(x) = u$ 로 놓고, $x$에 대해 풀어 역함수 $x = ..

지수 분포의 이해

1. 직관적인 이해: 이산 시간에서 연속 시간으로10분에 평균 1대꼴로 오는 버스가 있습니다.단위 시간(여기서는 1분) 당 버스 도착 확률(비율): $\lambda = \frac{1}{10} = 0.1$A는 오전 9시에 버스 정류장에 도착하여 버스를 기다립니다. 버스가 도착할 시간을 1분 단위의 구간으로 나누어 생각해 봅시다.0~1분 (구간 1)1~2분 (구간 2)...각 1분 단위 구간마다 버스가 도착할 확률을 $p = 0.1$이라고 가정해 봅시다. (반대로 도착하지 않을 확률은 $1-p = 0.9$입니다.) A가 $t$분 시점까지 계속 기다리고 있을 확률(버스가 아직 도착하지 않았을 확률)을 계산해 보겠습니다.1분 후에도 못 탔을 확률:첫 번째 구간에서 안 옴: $(1-p) = 0.9$2분 후에도 못..

감마 분포 -> 디리클레 분포

감마 분포(Gamma Distribution)로부터 디리클레 분포(Dirichlet Distribution)를 유도하는 과정은 확률 변수의 변환(Change of Variables) 기법을 사용하여 설명할 수 있습니다. 핵심 아이디어는 "서로 독립인 $K$개의 감마 확률 변수를 그 합으로 나누어 정규화(Normalize)하면 디리클레 분포를 따른다"는 것입니다. 단계별 유도 과정은 다음과 같습니다.1. 전제 조건 및 설정 $K$개의 서로 독립인 확률 변수 $X_1, X_2, \dots, X_K$가 있고, 각각은 척도 모수(scale parameter)가 1인 감마 분포를 따른다고 가정합니다. $$X_i \sim \text{Gamma}(\alpha_i, 1), \quad i = 1, \dots, K$$ 이..

지수 분포 -> 감마 분포

지수 분포가 '첫 번째 사건'이 발생할 때까지의 시간이라면, 감마 분포(Gamma Distribution)는 이를 일반화하여 '$k$번째 사건'이 발생할 때까지의 시간을 모델링합니다. 지수 분포 유도 때와 마찬가지로 푸아송 과정(Poisson Process)을 기반으로 아주 직관적인 방법(미소 구간 확률)을 사용하여 유도할 수 있습니다.1. 목표 설정: 무엇을 구하는가?상황: 사건이 평균적으로 단위 시간당 $\lambda$회 발생하는 푸아송 과정.확률 변수 $T$: $k$번째 사건이 발생할 때까지 걸리는 시간.목표: $T$의 확률 밀도 함수(PDF) $f(t)$ 구하기.2. 직관적 유도 (미소 구간 접근법)확률 밀도 함수 $f(t)$의 정의를 생각해 봅시다. $f(t)dt$는 '정확히 시간 $t$ 시점에..

푸아송 분포 -> 지수 분포

지수 분포의 수식을 유도하는 가장 논리적이고 표준적인 방법은 푸아송 과정(Poisson Process)에서 출발하는 것입니다. 지수 분포는 '사건이 발생할 때까지 걸리는 시간'에 대한 분포이고, 푸아송 분포는 '특정 시간 동안 발생하는 사건의 횟수'에 대한 분포입니다. 이 둘은 동전의 양면과 같습니다. 이 관계를 이용하여 지수 분포의 확률 밀도 함수(PDF)인 $f(t) = \lambda e^{-\lambda t}$를 유도해 보겠습니다. 1. 전제 조건: 푸아송 분포단위 시간당 평균 $\lambda$번 발생하는 사건이 있다고 가정합니다. 시간 $t$ 동안 사건이 총 $k$번 발생할 확률 $P(N(t)=k)$는 푸아송 분포를 따르며 다음과 같습니다. $$P(N(t) = k) = \frac{(\lambda ..