수학/확률과 통계 3

확률 분포 샘플링 방법

이 문서는 특정 확률 분포를 따르는 난수(샘플)를 추출하는 네 가지 주요 방법인 역변환법, 기각-채택법, 박스-뮬러 변환, MCMC에 대해 상세히 설명합니다.1. 역변환법 (Inverse Transform Method)가장 기본적이고 직관적인 방법으로, 누적 분포 함수(CDF)의 역함수를 이용합니다.기본 원리모든 누적 분포 함수 $F(x)$는 0과 1 사이의 값을 가집니다. 만약 $U$가 $(0, 1)$ 구간의 균등 분포(Uniform Distribution)를 따른다면, $X = F^{-1}(U)$는 $F$를 누적 분포 함수로 갖는 확률 변수가 됩니다.알고리즘목표 확률 분포의 PDF $f(x)$를 적분하여 CDF $F(x)$를 구합니다.$F(x) = u$ 로 놓고, $x$에 대해 풀어 역함수 $x = ..

두 벡터의 내적의 분산 구하기

1. 문제의 전제 조건 정의먼저, 우리가 가진 조건들을 수학적으로 정리해 보겠습니다.$n$차원의 두 벡터 $\mathbf{a}$와 $\mathbf{b}$가 있습니다. $\mathbf{a} = (a_1, a_2, \ldots, a_n)$$\mathbf{b} = (b_1, b_2, \ldots, b_n)$각 벡터의 성분 $a_i$와 $b_j$는 모두 독립적인 확률 변수라고 가정합니다. (이 가정이 매우 중요합니다!)각 성분의 평균(기대값)은 0입니다. $E[a_i] = 0$ (모든 $i$에 대해)$E[b_i] = 0$ (모든 $i$에 대해)각 성분의 분산은 1입니다. $Var(a_i) = 1$ (모든 $i$에 대해)$Var(b_i) = 1$ (모든 $i$에 대해)2. 목표: 내적의 분산우리가 구하려는 것은 ..

확률(Probability)과 우도(Likelihood): 명확한 개념 비교

통계학을 공부할 때 가장 혼동하기 쉬운 개념 중 하나가 바로 확률(Probability)과 우도(Likelihood)입니다. 두 용어는 일상적으로 비슷하게 사용되지만, 통계적 추론의 세계에서는 근본적으로 다른 관점을 가집니다. 예시를 통한 개념 비교:확률 (모수로부터 관찰값 추정): 상황: 불투명한 주머니 속에 노란공 6개, 파란공 4개가 들어 있다는 사실을 알고 있다. 질문: 한 개의 공을 꺼낼 때 노란공일 가능성은? 우도 (관찰값으로부터 모수 추정):상황: 불투명한 주머니 속에 노란공과 파란공이 함께 들어 있다는 사실을 알고는 있지만 몇 개씩인지는 모른다.질문: 한 개의 공을 꺼냈다가 다시 집어 넣는 동작을 10번 반복했더니 노란공이 4번 나왔다. 그렇다면 주머니 속 노란공과 파란공의 비율이 4:6일..