개인정보보호 강화 기술/차등 정보보호 7

DP-06. 질의 함수에 의해서만 결정되는 전역 민감도

전역 민감도(Global Sensitivity)는 데이터셋 자체와는 무관하게, 오직 질의(query) 함수에 의해서만 결정된다.1. 간단한 비유로 시작하기학교 선생님이 학생들의 키를 조사한다고 상상해 봅시다. 선생님은 두 가지 질문(질의)을 할 수 있습니다.질의 1(COUNT): "우리 반 학생은 총 몇 명인가요?"질의 2(SUM): "우리 반 학생들의 키(cm)를 모두 더하면 얼마인가요?"이때, '민감도'란 "학생 한 명이 전학을 오거나 갔을 때, 질문의 답이 얼마나 크게 변할 수 있는가?"를 의미합니다.질의 1(COUNT): 학생 한 명이 추가되거나 빠지면, '총 학생 수'는 언제나 정확히 1만큼 변합니다. 우리 반에 어떤 학생들이 있는지, 그들의 키가 몇인지는 전혀 중요하지 않습니다. 이 질의의 민..

DP-05. 차등 정보보호의 핵심 개념: 인접 데이터셋

차등 정보보호(Differential Privacy)는 "어떤 한 개인이 데이터셋에 포함되거나 포함되지 않더라도, 분석 결과는 거의 바뀌지 않아야 한다"는 강력한 개인정보보호 모델입니다. 여기서 '거의 바뀌지 않음'을 수학적으로 엄밀하게 정의하기 위해 사용되는 핵심 도구가 바로 인접 데이터셋(Adjacent Datasets)입니다. 간단히 말해, 인접 데이터셋이란 단 한 사람의 데이터만 다른 두 개의 데이터셋을 의미합니다.인접 데이터셋의 두 가지 주요 정의인접 데이터셋을 정의하는 방식은 크게 두 가지로 나뉩니다. 어떤 시나리오에서 개인정보를 보호하고 싶은지에 따라 적절한 정의를 사용합니다.1. 레코드 추가/삭제 (비제한적 인접성, Unbounded Adjacency)가장 일반적인 정의입니다. 두 데이터셋..

DP-04. 데이터 처리 방식 및 구현 모델에 따른 분류

데이터 처리 방식에 따른 분류데이터에 직접 적용되어 프라이버시를 보장하는 핵심 알고리즘들입니다.노이즈 추가차등 정보보호에서 가장 보편적으로 사용되는 기법입니다. 핵심 원리는 데이터베이스에 대한 통계적 질의(Query)의 결과값에 수학적으로 생성된 '노이즈(noise)'라고 불리는 무작위 숫자를 더하여, 개별 데이터의 기여도를 모호하게 만드는 것입니다.작동 원리쿼리 실행: 데이터 분석가가 데이터베이스에 쿼리(예: "30대 사용자들의 평균 소득은 얼마인가?")를 실행하면, 시스템은 먼저 실제 결과값을 계산합니다.민감도(Sensitivity) 계산: 쿼리 결과가 데이터베이스 내의 단 한 사람의 데이터 변화에 의해 얼마나 크게 변할 수 있는지를 측정합니다. 예를 들어, 한 사람의 데이터를 추가하거나 제거했을 때..

DP-03. 차등의 의미 및 수학적 정의

차등의 의미차등 정보보호(Differential Privacy)에서 '차등(differential)'이라는 단어는 '차이(difference)'를 의미하며, 데이터베이스에 특정 개인의 데이터가 포함되거나 포함되지 않았을 때, 또는 변경되었을 때 발생하는 '결과의 차이를 제어'하는 기술의 핵심 개념을 직접적으로 나타냅니다.이 용어는 2006년 컴퓨터 과학자 신시아 드워크(Cynthia Dwork)가 발표한 논문 "Differential Privacy"에서 처음으로 공식화되었습니다. 이 개념의 핵심은 데이터베이스에 대한 질의(query) 결과가 특정 개인의 데이터 유무, 또는 변경에 따라 크게 달라지지 않도록 보장하는 것입니다. 즉, 데이터베이스에서 한 사람의 정보를 추가, 삭제, 또는 변경하더라도 분석 결..

DP-02. 재식별 위험의 정량화를 위한 실마리

재식별 위험, 어떻게 측정할 수 있을까?데이터가 공개될 때 우리가 느끼는 '왠지 모를 불안감'을 숫자로 측정할 수 있다면 어떨까요? 놀랍게도, 프라이버시 보호 기술은 그 막연한 불안감을 구체적인 '위험도'로 계산하고 관리하는 것을 목표로 합니다. 그 실마리는 '한 개인의 정보가 전체 결과에 미치는 영향'을 살펴보는 데 있습니다. 데이터베이스에 내 정보가 추가됨으로 인해 통계 결과가 크게 달라진다면, 역으로 그 결과를 통해 나를 특정하기 쉬워진다는 의미입니다. 반대로 내 정보가 추가되어도 결과에 거의 변화가 없다면, 나는 수많은 데이터 속에 안전하게 숨을 수 있습니다. 즉, 재식별 위험을 낮추려면 개인의 정보가 결과에 미치는 영향(차이)을 최소화해야 합니다.상황 1: N명의 데이터베이스 → 통계 결과 A상..

DP-01. 재식별 위험: 보이지 않는 위협

데이터의 가치와 공개의 역설데이터를 완벽하게 보호하는 가장 확실한 방법은 아무에게도 공개하지 않는 것입니다. 하지만 이는 데이터가 가진 무한한 잠재력을 사장시키는 것과 같습니다. 결국 데이터의 가치를 실현하기 위해 '공개'는 피할 수 없는 선택이며, 바로 그 순간 '재식별'이라는 피할 수 없는 위험이 뒤따릅니다. 이름이나 주민등록번호 같은 명백한 식별자를 제거하는 것만으로는 충분하지 않습니다. 언뜻 사소해 보이는 여러 정보가 조각 그림 맞추듯 결합되면, 결국 특정 개인을 가리키는 '재식별'의 화살이 될 수 있기 때문입니다. 이 위험이 얼마나 현실적인지, 구체적인 시나리오를 통해 살펴보겠습니다.평범한 통계에 숨겨진 위험어느 작은 마을에 1,000명이 살고 있습니다. 보건 당국이 이 마을의 희귀 질병 유병률..

DP-17. 가우시안 노이즈에서 프라이버시 손실 관계식 유도

프라이버시 손실 관계 수식 유도차등 정보보호에서 가우시안 메커니즘이 (ε, δ)-DP를 만족할 때, 다음 파라미터들 간의 관계는 어떻게 될까요?$ε$: 프라이버시 손실 예산$δ$: ε-DP가 깨질 수 있는 확률 (프라이버시 손실 예산 초과 확률)$S$: L2-민감도 (인접한 두 데이터셋 $D_1$, $D_2$에 대한 질의 함수 $f$의 결과값 차이를 L2-놈으로 정의할 때 이들 사이의 최댓값)$$S=\max_{D_1,D_2}||f(D_1)-f(D_2)||_2$$$σ$: 노이즈 표준편차프라이버시 손실은 데이터셋 $D_1$와 $D_2$(하나의 레코드만 차이나는 인접 데이터셋)에 대한 질의 함수 $f$의 결과 $o$가 나올 확률의 비율로 정의됩니다. 여기에 로그 함수를 적용하여 확률 변수 $L$을 다음과 같이..