FedTensor

  • 홈
  • 태그
  • 방명록

혼란도 1

혼란도(Perplexity, PPL)

혼란도는 언어 모델(LM)이 텍스트를 얼마나 잘 예측하는지 측정하는 표준 지표입니다. 이름 그대로, 모델이 특정 단어 시퀀스(문장)를 보고 얼마나 '당황했는지' 또는 '혼란스러워했는지'를 수치화한 것입니다.PPL이 낮을수록 (Less perplexed) 모델이 해당 텍스트의 구조를 잘 이해하고 다음 단어를 높은 확률로 정확하게 예측했다는 의미입니다. (성능이 좋음)PPL이 높을수록 (More perplexed) 모델이 해당 텍스트를 예측하는 데 어려움을 겪었으며, 실제 정답 단어에 매우 낮은 확률을 할당했다는 의미입니다. (성능이 나쁨)1. 직관적인 이해: "평균적인 선택지의 개수"PPL을 가장 쉽게 이해하는 방법은 "모델이 다음 단어를 예측할 때 평균적으로 느끼는 유효한 선택지의 개수"라고 생각하는 것..

인공지능/평가지표 2025.10.29
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

전역민감도, 차등정보보호, 비밀공유, smpc, map, 최소작용의원리, 인접데이터셋, 뇌가소성, 프라이버시, 기억, 개인정보보호, 감마분포, 이질적데이터, 경사하강법, 보안다자간계산, secagg+, 푸아송분포, 데이터분석, 신경세포, 로지스틱회귀, 차분프라이버시, non-iid, 연합학습, 학습, 안전한집계, 베이지안추론, 신경망, 트랜스포머, 사이버보안, 지수분포,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바