주성분분석 2

차원 축소 기법 비교: PCA, SVD, ICA 핵심 차이점

세 기법(PCA, SVD, ICA)은 모두 데이터에 내재된 잠재적인 성분(component)이나 기저(basis)를 찾는다는 공통점이 있습니다. 하지만 무엇을 목표로 삼는지와 찾아내는 성분에 어떤 제약 조건을 거는지에서 근본적인 차이가 발생합니다.기법 비교1. PCA와 SVD: 통계 기법과 그것을 푸는 수학 도구두 기법은 수학적으로 매우 밀접하여 종종 혼용되지만, 개념적인 출발점이 다릅니다.관계: PCA는 통계적인 목표(분산 최대화)를 가진 분석 기법이며, SVD는 그 목표를 달성하기 위한 강력하고 안정적인 수학적 도구입니다. 실제로 데이터의 공분산 행렬을 직접 계산하여 PCA를 수행하는 것보다, 원본 데이터 행렬에 바로 SVD를 적용하여 주성분(Principal Components)을 찾는 방식이 수치..

데이터 분석을 위한 7가지 전통적인 차원 축소 기법

데이터 분석에서 차원 축소는 고차원의 데이터셋을 저차원으로 변환하여 분석을 용이하게 하고, 시각화하며, 계산 비용을 줄이는 중요한 과정입니다. 다음은 널리 사용되는 7가지 전통적인 차원 축소 기법입니다.1. 주성분 분석 (Principal Component Analysis - PCA)주성분 분석(PCA)은 가장 널리 알려진 비지도 학습 기반의 차원 축소 기법입니다. 데이터의 분산(variance)을 가장 잘 보존하는 새로운 좌표축, 즉 '주성분(Principal Component)'을 찾습니다. 첫 번째 주성분은 데이터의 가장 큰 분산을 설명하며, 두 번째 주성분은 첫 번째와 직교하면서 나머지 분산을 가장 잘 설명하는 축입니다. 이 과정을 통해 원본 데이터의 정보를 최대한 유지하면서 차원을 줄일 수 있습..