연합학습은 데이터를 중앙 서버로 이동시키지 않고, 데이터가 위치한 각 디바이스(또는 사일로)에서 로컬 모델을 학습시킨 후, 모델의 업데이트 값(예: 가중치, 그래디언트)만을 중앙 서버로 전송하여 글로벌 모델을 업데이트하는 분산형 머신러닝 방식입니다. 이러한 'Code-to-Data' 접근 방식은 데이터 프라이버시를 획기적으로 향상시키지만, 기존의 'Data-to-Code' 중앙 집중식 인프라와는 데이터가 아닌 학습 코드(모델)가 이동한다는 점에서 근본적으로 다릅니다. 따라서 연합학습을 성공적으로 도입하기 위해서는 기존 IT 인프라와의 호환성을 면밀히 검토하고 전략을 수립해야 합니다. 주요 고려사항은 다음과 같습니다.1. 데이터 인프라 (Data Infrastructure)데이터가 이동하지 않기 때문에, ..