FedTensor

  • 홈
  • 태그
  • 방명록

운영용이성 1

연합학습 도입 시 운영 용이성 고려사항

연합학습은 데이터를 중앙 서버로 전송하지 않고, 각 클라이언트(예: 모바일 기기, 병원, 공장)에서 로컬로 모델을 학습한 뒤, 학습된 모델의 일부(가중치 등)만을 중앙 서버로 보내 집계(aggregation)하는 분산형 머신러닝 방식입니다. 이러한 특성상, 연합학습의 '운영 용이성'은 기존의 중앙 집중식 MLOps(머신러닝 운영)와는 완전히 다른 차원의 복잡성을 가집니다. 운영 용이성은 단순히 "모델이 잘 돌아간다"를 넘어, "분산된 환경에서 시스템을 얼마나 안정적이고 효율적으로 유지보수할 수 있는가"의 문제입니다. 연합학습 도입 시 운영 용이성 측면에서 고려해야 할 주요 사항은 다음과 같습니다.1. 시스템 구축 및 배포 (Setup & Deployment)클라이언트 환경의 다양성: 연합학습은 수많은 이..

연합학습/구축 방안 2025.11.06
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

트랜스포머, secagg+, smpc, 신경세포, 학습, 비밀공유, 경사하강법, 프라이버시, 감마분포, 베이지안추론, 신경망, 최소작용의원리, 이질적데이터, 차등정보보호, 지수분포, 기억, 사이버보안, non-iid, 뇌가소성, 차분프라이버시, 안전한집계, 푸아송분포, 개인정보보호, 데이터분석, 전역민감도, 보안다자간계산, 로지스틱회귀, 인접데이터셋, 연합학습, map,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바