트랜스포머의 어텐션(Attention) 함수는 문장이나 데이터 시퀀스 내의 여러 요소(예: 단어) 중 "지금 이 순간 어떤 요소에 집중(attention)해야 하는지"를 계산하는 메커니즘입니다.간단히 말해, 특정 단어를 처리할 때 문장 내의 다른 모든 단어와의 연관성 점수(relevance score)를 계산하고, 이 점수를 가중치로 사용하여 문맥을 파악하는 방식입니다.트랜스포머에서 사용하는 어텐션의 핵심은 "스케일드 닷-프로덕트 어텐션 (Scaled Dot-Product Attention)"입니다.스케일드 닷-프로덕트 어텐션의 3가지 핵심 요소어텐션 함수는 3가지 주요 벡터(혹은 행렬)를 입력으로 받습니다.Query (Q): 현재 처리 중인 요소(단어)를 나타냅니다. "내가 지금 찾고 싶은 것" 또는 ..