FedTensor

  • 홈
  • 태그
  • 방명록

모델탈취 1

보안 위협: 모델 탈취/추출 공격(Model Stealing/Extraction Attack)

인공지능(AI) 모델, 특히 딥러닝 모델의 구조(architecture)와 파라미터(parameter, 가중치)는 모델의 핵심 지적 재산(IP)이자 성능을 좌우하는 전부입니다. 이러한 정보가 유출되는 것은 기업이나 연구 기관에 막대한 금전적, 전략적 손실을 초래할 수 있는 심각한 보안 위협입니다. 이러한 위협은 크게 '모델 탈취(Model Stealing)' 또는 '모델 추출(Model Extraction)' 공격의 범주에 속합니다.1. 모델 구조 누출모델 구조 누출은 AI 모델의 '청사진'을 훔치는 행위입니다. 이는 모델이 몇 개의 레이어로 구성되어 있는지, 각 레이어는 어떤 종류(e.g., Convolutional, Recurrent, Transformer)인지, 어떻게 연결되어 있는지 등의 하이퍼파..

인공지능/모델 보안 2025.10.29
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

개인정보보호, 트랜스포머, 전역민감도, 사이버보안, smpc, 인접데이터셋, 보안다자간계산, 기억, 신경망, 차등정보보호, secagg+, 연합학습, 로지스틱회귀, 안전한집계, 최소작용의원리, 감마분포, 데이터분석, 학습, 지수분포, 경사하강법, 베이지안추론, 신경세포, 이질적데이터, non-iid, 뇌가소성, 푸아송분포, 차분프라이버시, 비밀공유, 프라이버시, map,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바