FedTensor

  • 홈
  • 태그
  • 방명록

모델역공격 1

보안 위협: 모델 역공격(Model Inversion Attack)

인공지능(AI) 모델의 보안 위협 중 하나인 모델 역공격(Model Inversion Attack)에 대해 소개하고 주요 사례를 설명합니다.모델 역공격 (Model Inversion Attack) 이란? 모델 역공격은 이미 학습이 완료된 AI 모델을 이용하여, 모델이 학습했던 원본 학습 데이터(training data)의 일부 또는 전체를 복원하려는 사이버 공격입니다. 일반적으로 AI 모델은 학습 데이터를 통해 특정 패턴을 학습하며, 이 과정에서 데이터의 민감한 정보가 모델 내부에 '기억'될 수 있습니다. 공격자는 이 점을 악용하여, 모델의 출력값(예: 예측 결과, 신뢰도 점수)을 분석하고 역추적함으로써 원본 데이터를 재구성해냅니다.주요 목표: 모델이 학습한 민감한 정보(개인정보, 의료 기록, 금융 데이..

인공지능/모델 보안 2025.10.29
이전
1
다음
더보기
프로필사진

FedTensor

데이터의 보호와 활용 - 천천히, 제대로

  • 분류 전체보기 (127) N
    • 뇌과학 (14)
      • 뇌 가소성 (8)
      • 뇌 신경망 (4)
      • 의식 (2)
    • 인공지능 (29)
      • 신경망 이해 (6)
      • 트랜스포머 이해 (6)
      • BERT 계열 이해 (4)
      • GPT 계열 이해 (1)
      • 이미지 분류 (3)
      • 객체 탐지 및 추적 (1)
      • 평가지표 (3)
      • 모델 보안 (5)
    • 연합학습 (27)
      • 사이버 보안 (9)
      • 안전한 집계 (4)
      • 추론 성능 (6)
      • 구축 방안 (8)
    • 개인정보보호 강화 기술 (14)
      • PETs (1)
      • 타원 곡선 암호 (0)
      • 보안 다자간 계산 (6)
      • 영지식 증명 (0)
      • 차등 정보보호 (7)
    • 정보량과 엔트로피 (0)
    • 데이터 분석 (15)
      • 회귀 분석 (8)
      • 차원 축소 (2)
      • 가설 검정 (2)
      • 연관 분석 (1)
      • 시각화 (2)
    • 수학 (20) N
      • 베이지안 추론 (6)
      • 선형대수학 (2)
      • 확률과 통계 (3)
      • 푸아송 과정과 확률 분포 (7)
      • 암호학을 위한 수학 (2) N
    • 물리 (8)
      • 고전역학 (4)
      • 상대성 이론 (3)
      • 양자역학 (1)

Tag

차등정보보호, 보안다자간계산, map, 트랜스포머, 전역민감도, 데이터분석, non-iid, secagg+, 연합학습, 기억, 개인정보보호, 경사하강법, 뇌가소성, 신경세포, 비밀공유, 신경망, 최소작용의원리, 베이지안추론, 인접데이터셋, 차분프라이버시, 감마분포, 푸아송분포, 안전한집계, 사이버보안, 이질적데이터, 학습, 프라이버시, 지수분포, smpc, 로지스틱회귀,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2026/01   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바