인공지능 모델의 보안 위협 중 하나인 멤버십 추론 공격에 대해 소개하고, 실제 적용 사례를 제시합니다.멤버십 추론 공격 소개멤버십 추론 공격은 특정 데이터가 AI 모델의 학습 데이터 세트에 포함되었는지 여부를 알아내려는 프라이버시 공격입니다.1. 공격의 목표와 원리목표: 공격자는 자신이 가진 특정 데이터(예: A라는 사람의 의료 기록, B의 사진)가 이 모델을 학습시키는 데 사용되었는지 '예' 또는 '아니오'로 판별하는 것을 목표로 합니다.핵심 원리: AI 모델, 특히 딥러닝 모델은 학습 데이터에 과적합(overfitting)되는 경향이 있습니다. 즉, 모델은 자신이 학습한 '본 적 있는' 데이터와 '처음 보는' 데이터에 대해 미묘하게 다르게 반응합니다. 학습 데이터(멤버): 모델이 이미 학습한 데이터가..