1. 개요본 4단계 전략은 연합학습의 핵심 과제인 데이터 불균형(Data Heterogeneity, Non-IID) 문제를 단계적으로 해결하고, 최종적으로 개인화를 통해 각 기관에 최적화된 모델을 제공하는 로드맵입니다. 각 단계는 독립적인 과정이 아니라, 앞 단계의 결과 모델이 다음 단계의 초기 시작점이 되는 연속적인 진화 과정으로 설계되었습니다.1~2단계: 콜드 스타트(Cold Start) 문제 해결 및 데이터 프라이버시를 보장하는 베이스라인 구축.3~4단계: 기관별 데이터 분포 차이로 인한 성능 저하를 막고, 각 도메인에 특화된 모델 제공.2. 단계별 상세 실행 전략[1단계] 중앙집중 방식 학습"콜드 스타트 해결 및 초기 기준점 확보" 연합학습은 초기 모델의 성능에 따라 수렴 속도가 크게 달라집니다...