감마분포 3

감마 분포 -> 디리클레 분포

감마 분포(Gamma Distribution)로부터 디리클레 분포(Dirichlet Distribution)를 유도하는 과정은 확률 변수의 변환(Change of Variables) 기법을 사용하여 설명할 수 있습니다. 핵심 아이디어는 "서로 독립인 $K$개의 감마 확률 변수를 그 합으로 나누어 정규화(Normalize)하면 디리클레 분포를 따른다"는 것입니다. 단계별 유도 과정은 다음과 같습니다.1. 전제 조건 및 설정 $K$개의 서로 독립인 확률 변수 $X_1, X_2, \dots, X_K$가 있고, 각각은 척도 모수(scale parameter)가 1인 감마 분포를 따른다고 가정합니다. $$X_i \sim \text{Gamma}(\alpha_i, 1), \quad i = 1, \dots, K$$ 이..

지수 분포 -> 감마 분포

지수 분포가 '첫 번째 사건'이 발생할 때까지의 시간이라면, 감마 분포(Gamma Distribution)는 이를 일반화하여 '$k$번째 사건'이 발생할 때까지의 시간을 모델링합니다. 지수 분포 유도 때와 마찬가지로 푸아송 과정(Poisson Process)을 기반으로 아주 직관적인 방법(미소 구간 확률)을 사용하여 유도할 수 있습니다.1. 목표 설정: 무엇을 구하는가?상황: 사건이 평균적으로 단위 시간당 $\lambda$회 발생하는 푸아송 과정.확률 변수 $T$: $k$번째 사건이 발생할 때까지 걸리는 시간.목표: $T$의 확률 밀도 함수(PDF) $f(t)$ 구하기.2. 직관적 유도 (미소 구간 접근법)확률 밀도 함수 $f(t)$의 정의를 생각해 봅시다. $f(t)dt$는 '정확히 시간 $t$ 시점에..

이항 분포에서 Non-IID까지: 확률 분포의 연결 고리와 응용

1) 이항 분포 -> 2) 푸아송 분포 -> 3) 지수 분포 -> 4) 감마 분포 -> 5) 디리클레 분포 -> 6) Non-IID 데이터 시뮬레이션 확률 분포들이 서로 어떻게 연결되어 있는지 이해하는 것은 통계적 모델링과 데이터 시뮬레이션, 특히 머신러닝의 데이터 분포를 이해하는 데 매우 중요합니다. 위 여섯 단계는 '이산(Discrete)에서 연속(Continuous)으로', 그리고 '단일 사건에서 다변량 비율(Multivariate Proportion)로' 확장되는 흐름을 가지고 있습니다. 이 문서에서는 각 단계의 핵심 개념과 수식적 관계, 그리고 마지막으로 이를 활용한 Non-IID 데이터 시뮬레이션까지 설명합니다.1. 이항 분포(Binomial) $\rightarrow$ 푸아송 분포(Poisso..